Forklift Fuses

Forklift Fuse - A fuse consists of a metal strip or a wire fuse element of small cross-section in comparison to the circuit conductors, and is usually mounted between two electrical terminals. Generally, the fuse is enclosed by a non-combustible and non-conducting housing. The fuse is arranged in series which can carry all the current passing through the protected circuit. The resistance of the element produces heat due to the current flow. The size and the construction of the element is empirically determined to be certain that the heat produced for a normal current does not cause the element to attain a high temperature. In instances where too high of a current flows, the element either melts directly or it rises to a higher temperature and melts a soldered joint in the fuse that opens the circuit.

If the metal conductor parts, an electric arc is formed between un-melted ends of the fuse. The arc begins to grow until the required voltage to sustain the arc is in fact greater than the circuits available voltage. This is what leads to the current flow to become terminated. Where alternating current circuits are concerned, the current naturally reverses direction on each cycle. This method greatly enhances the fuse interruption speed. When it comes to current-limiting fuses, the voltage needed to sustain the arc builds up fast enough to be able to basically stop the fault current previous to the first peak of the AC waveform. This effect greatly limits damage to downstream protected units.

The fuse is often made out of zinc, copper, alloys, silver or aluminum for the reason that these allow for predictable and stable characteristics. The fuse ideally, would carry its current for an undetermined period and melt quickly on a small excess. It is important that the element should not become damaged by minor harmless surges of current, and should not oxidize or change its behavior following possible years of service.

To be able to increase heating effect, the fuse elements may be shaped. In large fuses, currents can be divided between multiple metal strips. A dual-element fuse could comprise a metal strip which melts immediately on a short circuit. This kind of fuse can also have a low-melting solder joint which responds to long-term overload of low values than a short circuit. Fuse elements may be supported by nichrome or steel wires. This would make sure that no strain is placed on the element however a spring may be included to increase the speed of parting the element fragments.

The fuse element is usually surrounded by materials which function in order to speed up the quenching of the arc. A few examples consist of silica sand, air and non-conducting liquids.